Increasing the net charge and decreasing the hydrophobicity of bovine carbonic anhydrase decreases the rate of denaturation with sodium dodecyl sulfate.
نویسندگان
چکیده
This study compares the rate of denaturation with sodium dodecyl sulfate (SDS) of the individual rungs of protein charge ladders generated by acylation of the lysine epsilon-NH3+ groups of bovine carbonic anhydrase II (BCA). Each acylation decreases the number of positively charged groups, increases the net negative charge, and increases the hydrophobic surface area of BCA. This study reports the kinetics of denaturation in solutions containing SDS of the protein charge ladders generated with acetic and hexanoic anhydrides; plotting these rates of denaturation as a function of the number of modifications yields a U-shaped curve. The proteins with an intermediate number of modifications are the most stable to denaturation by SDS. There are four competing interactions-two resulting from the change in electrostatics and two resulting from the change in exposed hydrophobic surface area-that determine how a modification affects the stability of a rung of a charge ladder of BCA to denaturation with SDS. A model based on assumptions about how these interactions affect the folded and transition states has been developed and fits the experimental results. Modeling indicates that for each additional acylation, the magnitude of the change in the activation energy of denaturation (DeltaDeltaG(double dagger)) due to changes in the electrostatics is much larger than the change in DeltaDeltaG(double dagger) due to changes in the hydrophobicity, but the intermolecular and intramolecular electrostatic effects are opposite in sign. At the high numbers of acylations, hydrophobic interactions cause the hexanoyl-modified BCA to denature nearly three orders of magnitude more rapidly than the acetyl-modified BCA.
منابع مشابه
Influence of fluorocarbon and hydrocarbon acyl groups at the surface of bovine carbonic anhydrase II on the kinetics of denaturation by sodium dodecyl sulfate.
This paper examines the influence of acylation of the Lys-ε-NH(3)(+) groups of bovine carbonic anhydrase (BCA, EC 4.2.1.1) to Lys-ε-NHCOR (R = -CH(3), -CH(2)CH(3), and -CH(CH(3))(2), -CF(3)) on the rate of denaturation of this protein in buffer containing sodium dodecyl sulfate (SDS). Analysis of the rates suggested separate effects due to electrostatic charge and hydrophobic interactions. Rate...
متن کاملEffects of surface charge on denaturation of bovine carbonic anhydrase.
This work compares the denaturation of two proteins-bovine carbonic anhydrase II (BCA) and its derivative with all lysine groups acetylated (BCA-Ac(18))-by urea, guanidinium chloride (GuHCl), heat, and sodium dodecyl sulfate (SDS). It demonstrates that increasing the net negative charge of the protein by acetylation of lysines reduces its stability to urea, GuHCl, and heat, but increases its ki...
متن کاملInfluence of the Zn(II) cofactor on the refolding of bovine carbonic anhydrase after denaturation with sodium dodecyl sulfate.
This paper uses capillary electrophoresis to follow a globular metalloprotein--bovine carbonic anhydrase II (BCA, EC 4.2.1.1)--on unfolding upon treatment with sodium dodecyl sulfate (SDS) and refolding upon removal of SDS, both in the presence and the absence of its Zn(II) cofactor. This research demonstrates that the Zn(II) cofactor is not required for refolding into a nativelike conformation...
متن کاملPeracetylated bovine carbonic anhydrase (BCA-Ac18) is kinetically more stable than native BCA to sodium dodecyl sulfate.
Bovine carbonic anhydrase (BCA) and its derivative with all lysine groups acetylated (BCA-Ac18) have different stabilities toward denaturation by sodium dodecyl sulfate (SDS). This difference is kinetic: BCA-Ac18 denatures more slowly than BCA by several orders of magnitude over concentrations of SDS ranging from 2.5 to 10 mM. The rates of renaturation of BCA-Ac18 are greater than those of BCA,...
متن کاملpH Dependence Study of the Kinetic Reaction of Bovine Carbonic Anhydrase with 2,2'-Dithiobispyridine in the Absence and Presence of Surfactants
The pH dependence study reveals that the Cys 206 sulphydryl group of bovine carbonicanhydrase in the native form is not exposed. During the reaction of 2,2'-dithiobispyridine (2-DTP) with the enzyme, there was no absorbance change recorded. In the presence ofsurfactants, the pH dependence profiles of the apparent second order rate constants, kapp, forthe reaction of 2-DTP with bovine carbonic a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biophysical journal
دوره 91 1 شماره
صفحات -
تاریخ انتشار 2006